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ABSTRACT 

An improved technique for handling two-dimensional elastic flow is applied to 
several physical problems. The method differs from older methods in that no unresisted 
distortions of the mesh are allowed. A much quieter mesh results, and more information 
can be extracted from the calculation. 

I. INTRODUCTION 

The standard method for handling two-dimensional elastic-plastic flow has 
been published by Wilkins [l]. In this method the strain rates in a mesh are com- 
puted from the velocities and coordinates of the grid intersections in such a way 
that only the difference in the velocity or coordinate of points diagonally opposite 
one another on the mesh appear. That is, for instance, 

Gx = &4Y&% - GYS - Yl) - (4 - MY2 - YJI (1) 

Here A is the area of the mesh, the dot indicates differentiation with respect to time 
and the grid intersections have been numbered counterclockwise around the mesh, 
so that f, indicates the x velocity of the second point. Because the relative displace- 
ment of adjacent points does not appear in (l), all the strains, and hence stresses, 
are computed to be zero unless the diagonals of the mesh are distorted. Conse- 
quently, if one visualizes the grid intersections labeled as in an alkali-halide plane, 
the calculation resists only weakly distortions in which the alkali sublattice moves 
as a whole with respect to the halide sublattice. This allows unphysical distortions 
to appear which must be damped out by use of various artificial viscosities. 

1 This work was supported by the Advanced Research Projects Agency and was monitored 
by the Air Force Office of Scientific Research under Contract F4462O-67-C-0113. 

a Present address: Systems Science and Software, Inc. Box 1620, La Jolla, California. 
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That there must be distortions which do not lead to restoring forces can also be 
seen as follows: in two dimensions there are only four linear components of strain. 
On the other hand complete specification of the rotation and distortion of a 
quadrilateral requires six parameters. There must therefore be a two-dimensional 
manifold of distortions that leads to the same calculated stresses. 

While calculating the dynamic distortions of a beam, and in similar problems 
solved preparatory to a study of fracture phenomena in rock, we noticed the 
unphysical distortions which result using the technique just described, and it 
occurred to us to remedy the situation by representing the rigidity of the mesh 
more or less correctly. The following section describes such a method and the last 
section describes some applications. 

II. THE METHOD 

Evidently, one ought to difference the equations so that there are no unresisted 
distortions of the mesh. We have chosen to do that as follows: consider a quadri- 
lateral which was originally rectangular and had its lower left hand corner at 
X, Y. Let the lower left hand corner now be displaced to X, y and the point origi- 
nally at X + U, Y + V be displaced to x + u, y + a. Expand the present position 
as a function of the original position as follows 

(2) 

We have written down just six parameters in the expansion because this is enough 
to specify completely the positions of the corners and is as many as can be deter- 
mined by those positions. The term proportional to UV is preferable to one 
proportional to U2 or V2 because it maps the edges of the original rectangle into 
straight lines and this ensures that the meshes of the distorted lattice fit together 
without gaps or overlap. 

The coefficients a throughfmay be found from the coordinates of the grid. That 
is, if the intersections of grid lines around the mesh are numbered from 1 to 4 as 
before, the one with U = V = 0 is numbered 1, and the original rectangle had the 
dimensions L by K, then a through f are found from 

% = aL, va = dL, 
u,=aL+bKtcKL, v,=dL+eKffKL, (3) 
u, = bK, v4 = eK. 

Given a through f, one may compute the displacements u - U and v - V and 
from the displacements the strains as a function of position throughout the mesh. 
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To compute accelerations, we bisect each mesh in the X and Y directions, 
associate the masses of the four adjacent quarter zones with each mesh point 
and compute the force by integrating the stress around the circumference of the 
mass. To do this the stresses on the line segments U = L/2, 0 < V -=c K/2; 
U = L/2, K/2 < V < K and so forth are required. These can easily be computed 
from the strains, provided proper account is taken of the rotation of the mesh. 
To do the latter, we rotated the zone until the line along which the stress was to be 
computed, i.e. V = K/2 or U = L/2 was parallel to its original direction, i.e. the 
X or Y axis. This implies a rotation through an angle 

in the former case and an angle 

(5) 

in the latter. If the rotations are not taken into account, Hooke’s law as used below 
will give rise to large fictitious stresses. 

After rotation the strain in the x direction along the line of constant V is 

e ~~~=((1++cK)cos8+(d+~fK)sin~-1. (6) 

The primes indicate that a rotated coordinate system is in use. 
The stresses are, in the case of plane strain (no distortion perpendicular to the 

plane considered) by Hooke’s law, for instance 

=v’v’ = (2~ + We +fU) cosd-((b+cU)sinB- I] 

+ h[(u + &K) cos 8 + (d + $fK) sin B - I]. 0 

Where A and p are Lame constants and the first subscript designates the normal 
to the surface across which a stress in the direction of the second subscript is 
exerted. 

The corresponding forces are obtained by integrating along the appropriate 
half bisector of the mesh to give, for instance 

F v,v~ = dUu,.,~ = 
s (2~ + A)[(e + ifaL) cos 8 - (b + &caL) sin 6 - l] &L 

+ X[(a + &cK)cos 8 + (d + $fK)sin 0 - l] $L, (8) 

where the limits on the integral are 0 and L/2 or L/2 and L, and N is 1 in the former 
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case and 3 in the latter. Then the force is rotated back into the original Eulerian 
frame, that is 

(9) 

Finally the force is summed over the eight line segments surrounding the inter- 
section, and is used to accelerate the mass centered there. A full set of difference 
equations appears in the Appendix. 

Physically, the procedure just described appears reasonable. Others have applied 
similar, and more elaborate, techniques to problems in statics ([2], [3]). In those 
calculations, a square is deformed into a quadrangle, and the forces required at the 
corners are computed, for the case of plane stress and Poisson ratio l/3. Given a 
displacement in the x direction at point 3, Pian [3] finds, in an approximation like 
ours 

fsl = -0.25OO,f,, = 0.0625, fs3 = 0.5000, fz4 = @31&f,, = -0.1875, 

fuz = 0, fgs = 0.1875,& = 0. 
(10) 

Here, fZ. is the force in the x direction at point 1 divided by the product of Young’s 
modulus, the plate thickness and the displacement of point 3. In his best approxi- 
mation he finds [4] 

fzl = -0.27771, fzz = 0.09021, fzs = 0.47229, fz4 = -0.28479, 

fvl = 0.1875, fvz = 0, fv, = O.l875,f,, = 0, 
(11) 

so that convergence appears quite good. Our technique, however, does not compute 
the force on a corner, but rather the force on a quarter of the zone. Modified to the 
plane stress case, it leads to forces somewhat different from Pian’s, namely 

fzl = -o.l875,f,, = O,& = 0.5625,f,, = -0.375O,f,, = -0.1875, 
(12) 

fvz = O,fgs = O.l875,f,, = 0. 

For static problems with short wavelength disturbances, then, our code will prob- 
ably not give the best possible answer. One could of course write the code so as to 
use Pian’s coefficients, but it is hard to say which set will give the best answers in a 
dynamic problem. 

Since fz2 + fz3 is the same in all the cases, a simple plane compression wave will 
have the same speed regardless of which formulation is chosen. Likewise fsl + fsz , 
which determines the shear wave speed, is alike in both approximations. Indeed, 
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any reasonable approximation must give the same answers for the pure linear com- 
pression case and pure shear case, and give zero for the total force in any static 
distortion, so that there is really only one free parameter. Inasmuch as we believe 
the essential point to be that the lattice resists all possible distortions, we have 
made no effort to optimize the free parameter. 

111. EXAMPLES 

We have examined a beam 10.5 cm long, 1 cm high and infinitely wide simply 
supported $ cm from the ends and subjected to a displacement at the center. The 
steel was taken to have density 7.84 gm/cm3 and Lame constants h = 1.185, 
p = 0.79 megabars. The dilatational sound speed in this material is 0.594 cm/p set 
and the elastic constant appropriate for use in the thin plate approximation (no 
stress in one direction and no strain in a perpendicular direction) is 2.2571 which 
gives a period for the fundamental flexural mode of 450 p set, ignoring the fact 
that the constraint is not exactly at the end. The point at the top of the center of the 
beam was moved downward at a speed of 0.001 cm/p set for 50~ set and then held 
still. Figure I gives some results of the calculation. Figure la is a plot of the mesh 
as calculated by the TEMS code, which relies on the technique just described, 
at a time of 150~ sec. In order to make the distortion visible, it has been amplified 
by a factor 10, that is 10 times the present coordinate of the point minus 9 times the 
original coordinate has been plotted. It can be seen that higher modes of the beam 
are excited and indeed plots made at earlier times show a ringing with a period of 
about 100 p set as expected for the first harmonic. For comparison Figure lb is a 
similarly amplified plot of the result of applying the POP code which is derived 
from Wilkins’ HEMP code to the same problem, and Figure Ic is an unamplified 
plot of the same result. A tensor viscosity and a small Richtmyer-von Neumann 
viscosity were used in the latter calculation. No viscosity was used in the former. 

As another example, a beam of the same material, 0.16 cm high and 4 cm long, 
simply supported at the ends, was subjected to a moving load. A force of IO-3 
megabars per centimeter was spread out over half a zone (0.02 cm) and moved 
with a velocity of 0.1 cm/p sec. This problem, with a point load and in the usual 
approximation that the rotational inertia of the beam cross section may be ignored, 
has a well known analytic solution ([5], [6]). Because of the dispersion of flexural 
wave speeds, a train of waves moving with about twice the load speed moves 
ahead of the load, and leads to both upward and downward displacements. This is 
probably clearer from the form of Steele’s solution [6] than from the classical finite 
beam Fourier series solution [5]. Figure 2 exhibits the formation of the wave train, 
as computed by TEMS. In each case, the line above represents the appropriate 
analytic solution. 
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FIG. 1. The deflection of a beam subjected to a displacement at its center, see text for precise 
description. In part a of the figure, the mesh is given by the calculation described in the text. 
To make the displacements visible, they have been exaggerated by a factor of 10. In part b, 
the mesh is given by a HEMP-like calculation with the displacements similarly exaggerated. 
The relative motion of alternate mesh points is clearly evident. Part c, same as b without exaggera- 
tion. 
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FIG. 2. The deflection, exaggerated by a factor of 10, of a beam subject to a moving load. 
The line above the beam gives the theoretical deflection for a thin beam. The arrow indicates 
the position of the load. The formation of a wave train moving ahead of the load is clearly evident. 
Part a at 10 psec; b at 14 rsec. 

IV. CONCLUSION 

The method that has been described, when applied to some elementary problems 
significantly reduces the noise in the mesh observed with previous methods. The 
application of this method to various probIems in seismology and fracture is being 
carried out by one of us, and will be published elsewhere. 
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APPENDIX. FINITE DIFFERENCE EQUATIONS FOR THE Two DIMENSIONAL 

ELASTIC DYNAMICS CODE “TEMS” 

This description is given in rectangular coordinates. 

A. THE CALCULATIONAL GRID AND MASS ZONING 

A two dimensional Langrangian grid is placed in the material dividing the 
material into rectangles. Figure 3 is a schematic of the grid and a numbering 
system for the center and corners of the zones used in this description of the code. 
In particular 

@=k+$,Z+& 1 = k,l 

@=k+$,Z-& 2=k,I+I 

@=k-&l-4 3=k+l,l+l 

@=k-$,Z++ 4=k+I,Z 

Yt 

L- I L L*l 
I 

X 

FIG. 3. The grid and numbering scheme for the difference equations. 

The mass at each vertex of the rectangles is calculated initially (at time zero) and 
held constant for the entire calculation. This ensures conservation of mass in the 
calculation. The mass concentrated at each vertex is taken as $ the sum of the masses 
of the adjoining zones. For example: 

rn@ = pa’&,‘, 
(Al) 



EQUATIONS FOR ELASTIC FLOW 315 

The masses at the other vertices are calculated simiIarly. The area of a quadrangle 
is taken as 

A n = (A,),” + (&I)& 
(4:n = m3YY3” - Y4T + X3Y.hn - h”> + GYY2n - Y3% WI 

(AIdQ? = HX,“(Y,” - VI”) + X4n(Yln - Y39 + Gw - Y491. 
A1 and AI1 are the areas of the triangles I and II. 

B. STATE EQUATIONS 

The compression at cycle n is given by 

772 = [$I. = [%I. 2 * 643) 

The code permits the effective bulk modulus to be given by an expansion of the form 

aP n 
Ki” = q i = a + 2b(‘?in - 1) + ~C(Q” - l)2 + 4 d (@ _ 1)3, 1 1 (A4) 

where the coefficients b, c, d . . . are empirical fits to experimental shock data and can 
be found in the literature, for example Walsh et al. [7]. The coefficient a is the 
linear bulk modulus of the material. Given one of the Lame constants and Poisson’s 
ratio the remaining Lame constants can be found for linear elasticity. Poisson’s 
ratio is taken to be constant so that the Lame “constants” are given by 

where TV is the shear modulus and v is Poisson’s ratio. 

C. STRAINS AND STRESSES 

Consider a rectangle whose original corners were at (X, Y), (A’ + L, Y), 
(X + L, Y + K), (X, Y + K) and let the corners presently be at (x, v), (x + l2 , 
y + k,), (x + I,, y + k,), (x + I,, y + k4) as shown on Figure 4. 

Now consider a point whose original coordinate was (X + U, Y + V) and whose 
present coordinate is (X + u, y + u). Expand u and u as in Eq. (2). 

The coefficients a throughfcan be obtained by solving Eq. (3) which gives 

an = 1,/L, b” = IJK, d” = kdL, en = k,/K, 

C” = (1, - 1, - 1JLK f” = (k, - k2 - k&LK 
W) 
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FIG. 4. Comparison of undistorted and distorted meshes indicating the meaning of u and v. 

The distortion of the grid will produce, in general, both a rotation and a distor- 
tion of each individual mesh. As the rotation will lead to strains which, by Hooke’s 
law, Eq. (AlO), produce large stresses, it is necessary to account for the rotations 
separately. In the distorted mesh, a line of constant F’has a slope given by Eq. (4). 
Rotating the distorted mesh through the angle -0 puts this line parallel to its 
original orientation. After rotation through this angle, the point originally at U, V 
is at a’, U’ where 

14’ = 24 cos 8 + v sin 19, 

v’ = v cos 9 - 24 sin 8. 

The strains are accordingly 

a@’ - U) 
(44” = au =(a+cV)V)“cosP+(d+fV)nsin8”- 1, 

(E;,)n = a(v’ - Vn 

av = (e+fU)“cos0”--(b+cU)“sinP- 1, 

(Yt’P’)” = a* 
a(d - v)" + a(d - u) 

av = (b + cU)* cos f3” + (e +fU>” sin 8”. 

Eliminating the trigonometric functions by use of Eq. (4) gives 

(%f)” = N(a + cv2 + (a +m2 - v, 
($)fl = [ (ue - bd) + U(uf - dc) +zc - bf) _ 

6 + cvy + (d +fv)” 11” 

(A7) 

(A9) 

@ + W(a + cV> + Cd +ffv& +fU) (&J = [ ___ ~ n. 
ea + CVY + (d +fv)” I ’ 
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using Hooke’s Law, the stresses at a point along the line of constant V are 

Similarly a line of constant U in the distorted mesh has a slope given by Eq. (5). 
Rotating the distorted mesh through the angle -4 puts this line parallel to its 
original orientation. After rotation the point originally at U, V is at u’, D’ where 

24’ = u cos $b - u sin 9,s 

v’ = v cos 4 + u sin 46; 
(Al 1) 

the strains are accordingly 

a(u’ - up 
(4)” = au = (~+cV)“cos+~--((d+fV)“sinp- 1, 

a@’ - V) 
<4Y = av = (e +~U)“COS +“+ (b + cU)“sin $” - I, (A13 

(rtY>” = au a@ - v>” + a@’ - UP = (d + j-V)” (.os 4 . 
av 

+ (a + cV)~ sin @. 

Again eliminating the trigonometric functions with Eq. (5) gives 

(Egy = [ (ue - b d) + U(uf - dc) + V(ec - bf) _ 

d(e + fUjz + (b + cU>z ll” 
(et,)” = (d(e +fU)2 + (b + cU)~ - l)“, 6413) 

<Y,“Y>” = [ (a + cV)(b + cU) + (d + fW +.fU) 1 n 
d(FqiipT-QTz?~ ’ 

the stresses at a point along the line U = constant are 

(u,&,P = VP + A)” ($J” + wp, 
(a,,,Jn = pyy$yt)“. 

(A14) 

S The angle 4 is taken positive in the clockwise direction and the angle 0 is taken positive 
in the counterclockwise direction. 
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Occasionally it has been desirable to recover the stress field in the original frame 
in which case the stresses in the interior of the zone are defined by 

(u,,)” = (u.,~,)~ cos2 # + (u,,,,)~ sin2 # - 2(7,,,,)” sin * cos *, 

(u,,)~ = (u,,,,)~ cos2 # + (u~,,,)~ sin2 # + 2(7,1V,)” sin * cos *, 
(A151 

where 
7z’y’ = (WCC, + WdW, 

tan # = (tan 8” - tan 4”)/2. 
6416) 

This amounts to averaging the rotation and shear stresses computed along the 
lines U = constant and V = constant. 

D. THE MOMENTUM EQUATIONS 

For the dynamics, the stresses are integrated on the quarter zones about the mass 
point k, 1. For example, the integration is carried out along the dashed line segments 
about the mass point k, I in Figure 3. 

We must integrate the appropriate stresses along the line V = K/2 over the 
segment 0 < U < L/2 or L/2 < U < L depending on the zone corner bordering 
on the mass point, Likewise the integration must be carried out for the appropriate 
stresses along the line U = L/2 over the segment 0 < V d K/2 or K/2 d V < K. 
Either the strain definitions (A8) and (A12) or (A9) and (A13) may be used. We 
will use the definitions (A8) and (A12) to correspond to the form in the text of the 
report. The integrations in either case are trivial 

(r;,,,,)~ = j” [(2p + h){(e +,fU) cos 8 - (b + cU) sin 6 - I} 
+1 

+ A{@ + cK/2) cos 0 + (d +fK/2) sin 8 - l}p dU, 

(F*,dX = j’” Mb + w cos 0 + (e + fU) sin e>]” dU, 
Xl 

where x1 and x2 are the appropriate limits either x, = 0, xz = L/2 or xl 
xz = L, and 

(Fzr,f); = j”’ [(2p + A){@ + cV) cos $ - (d +fV) sin 4 - l} 
x3 

+ h{(e + fL/2) cos qh + (b + CL/~) sin # - l}]” dV, 

P’,,,~X = j” Md + f V) cos C# + (a + cV) sin $}r dV, 
Es 

6417) 

q L/2, 

6418) 
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where xg = 0, x,, = K/2 or x3 = K/2, x4 = K depending on the position of the 
zone about the mass point. Then 

tF,*d)T = (2~ + 3; [te + dL/4) cos ~9 - (b + acL/4) sin 0 - 11; L/2 

+ A: [(a + cK/2)cos 0 + (d +fK/2)sin 6 - 11: L/2, (A19) 

(Fdd)T = pin@ + wL/4)cos 8 + (e + 0lfL4) sin e]: L/2, 

and 

(f’,*,,)T = (2~ + A)c>;[(u + acK/4)cos 4 - (d + afK/4) sin 4 - 11: K/2 

+ AF[(e +~L/~)cos 4 + (b + CL/~) sin 4 - llFK/2, G420) 

(Fz*,*)T = pp[(d + ofK/4)cos # + (a + acK/4) sin ~$1: K/2, 

where the subscripts i denote the zone centers, for example those numbers enclosed 
in circles in Figure 3, in relation to mass point k, l, and it is the cycle number. 

01 = 1 for Equations (A19) for zones @ and 0, 

01 = 1 for Equations (A20) for zones @ and 0, 

01 = 3 for Equations (A19) for zones @ and @I, 

z = 3 for Equations (A20) for zones @ and @. 

As in the text, the first subscript designates the normal to the surface across which 
a stress in the direction of the second subscript is exerted. The primes on the 
subscripts denote that we are in a frame rotated with respect to the original frame. 

We must then rotate these forces back to the original frame to apply them to the 
momentum equation. 

and 

(A221 

581/3/z-11 
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The velocities can be computed from the force field by 

The positions can be incremented by 

(A241 

E. TIME STEP 

In accord with the Courant criterion, the time step is taken to be the minimum 
over the mesh of 

where 
Apt1 = /@+1/S. , 

S is the longest diagonal of the quadrangle, a is the local dilatational wave speed 
and C has been taken to be 0.6. 

F. GENERAL 

The boundaries of the mesh can be treated as having phantom zones with no 
tractions, normal forces or masses. The code will not correctly calculate displace- 
ment disturbances with frequencies shorter than the time acquired for a dilatational 
disturbance to cross 4 zones. If these disturbances are produced on the boundaries 
of the mesh, dispersion of the induced wave trains is observed. 

A tensor viscosity has been developed and used with the code. 
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